Luna		Data		Class	
vame		Date		Class	
	THE RESIDENCE OF THE PROPERTY		The state of the s		****

MODELS OF THE ATOM

Section Review

Objectives

- Identify inadequacies in the Rutherford atomic model
- Identify the new assumption in the Bohr model of the atom
- Describe the energies and positions of electrons according to the quantum mechanical model
- Describe how the shapes of orbitals at different sublevels vary

Vocabulary

• energy levels

• quantum mechanical model

• quantum

• atomic orbital

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

The chemical properties of atoms, ions, and molecules	1.
are related to the arrangement of the1 within them.	2.
The first modern atomic theory, proposed by,	3.
portrayed the atom as a solid, indivisible mass. After the discovery	4.
of the electron by, the atomic model was revised to	5.
include them. J.J. Thomson's model is referred to as the4	6.
model. Rutherford pictured the atom as a dense5	7.
surrounded by electrons. In the Bohr model, the electrons move	8.
in <u>6</u> paths. The <u>7</u> model is the modern description	
of the electrons in atoms. This model estimates the8 of findin	g an
electron within a certain volume of space surrounding the nucleus.	
Part B True-False	
Classify each of these statements as always true, AT; sometimes true, S7	T; or never true, NT.

	a quantum in order to move from one energy level energy level.	to the next higher
10	The electron probability clouds for atomic orbitals	are spherical
	in shape.	Chapter 5 Electrons in Atoms

9. Electrons must have a certain minimum amount of energy called

Name				Class	Date
endrality advantation on each or one	11.	The number of sublevels in the principal quantum num			ne square of
	12.	The maximum number of e			fourth
MARKA MA	13.	The higher the energy level energetic it is.	occupie	d by an electron the	more
	14.	The principal quantum nurthat principal energy level.	nber eqı	uals the number of su	ublevels within
		Natching			
Match	each d	lescription in Column B to th	e correct	term in Column A.	
		Column A		Column B	
	15.	quantum	a.	-	ound the nucleus of an atom s likely to be moving
	16.	atomic orbitals	ь.	-	the nucleus within which the nighest probability of being
14-50-4-14-5-14	17.	energy level	c.	-	gy required to move an electron ergy level to the next higher one
,	18.	quantum mechanical model	d.	the modern descrip in atoms	tion of the behavior of electrons
Part	D C	Questions and Prol	olems	•	
		llowing in the space provided			
		ize the development of atom		y.	
	des de la				
and the desired					
20. Ho	ow mai	ny orbitals are in each of the	followin	g sublevels?	
a.	4 <i>p</i> su	blevel			
ь.	3 <i>d</i> su	blevel			
c.	4f sub	olevel			
d.	2s sul	blevel			

		(21	
Vame	Date	Class	

PHYSICS AND THE QUANTUM MECHANICAL MODEL

Section Review

Objectives

- · Describe the relationship between the wavelength and frequency of light
- · Explain how the frequencies of light are related to changes in electron energies
- Distinguish between quantum mechanics and classical mechanics
- Identify the cause of the atomic emission spectrum

Vocabulary

- amplitude
- wavelength (λ)
- frequency (ν)
- hertz (Hz)

- electromagnetic radiation
- spectrum
- atomic emission spectrum
- ground state

- photons
- Heisenberg uncertainty principle

Key Equations

- $c = \lambda v$
- $E = h \times \nu$
- $\bullet \ \ \lambda = \frac{h}{mv}$

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

showed that the amount of radiant energy absorbed or emitted by

a body is proportional to the _______ of the radiation.

According to quantum mechanics, the motions of subatomic	l
particles may be described as $\underline{\hspace{1.5cm}1\hspace{1.5cm}}$. The frequency and	2.
wavelength of all waves are related.	3.
Every element emits <u>3</u> if it is heated by passing an	4.
electric discharge through its gas or vapor. Passing this emission	5.
through a prism gives the4 of the element.	6.
The quantum concept developed from Planck's studies of	7.
5 and Einstein's explanation of the6 effect. Planck	

Name	Class Date	
Part B True-False		
Classify each of these statements as al	ways true, AT; sometimes true, ST; or never true, NT.	
8. The speed of light is a confrequency of light by its	constant that can be obtained by dividing the wavelength.	
9. The amplitude of a way	ve is the distance between the crests.	
10. The energy of a body ca	an change only in small discrete units.	
11. The position and veloc with great certainty.	ity of an electron in an atom can be determined	
12. The photoelectric effectives a metal.	t will occur no matter what frequency of light	
Part C Matching	to the compatibility in Column 1	
Match each description in Column B		
Column A	Column B	
13. photons	a. predicts that all matter exhibits wavelike motions	
14. de Broglie's equation	b. the distance between two consecutive wave crests	
15. visible light	c. light quanta	
16. ground state	d. the lowest energy level for a given electron	
17. wavelength	e. example of electromagnetic radiation	
Part D Questions and P	roblems	
Answer the following in the space pro	vided.	
18. What is the frequency of radiation	n whose wavelength is 2.40×10^{-5} cm?	
19. Apply quantum theory to explain	n the photoelectric effect.	
		handadhan da

ELECTRONS IN ATOMS

Practice Problems

In your notebook, solve the following problems.

SECTION 5.1 MODELS OF THE ATOM

1. How many sublevels are in the following principal energy levels?

a.
$$n = 1$$

c.
$$n = 3$$

e.
$$n = 5$$

b.
$$n = 2$$

d.
$$n = 4$$

f.
$$n = 6$$

2. How many orbitals are in the following sublevels?

$$\mathbf{f.}$$
 3 p sublevel

3. What are the types of sublevels and number of orbitals in the following energy levels?

a.
$$n = 1$$

c.
$$n = 3$$

e.
$$n = 5$$

b.
$$n = 2$$

d.
$$n = 4$$

SECTION 5.2 ELECTRON ARRANGEMENT IN ATOMS

1. Write a complete electron configuration of each atom.

a. hydrogen

d. barium

g. krypton

b. vanadium

e. bromine

h. arsenic

c. magnesium

f. sulfur

i. radon

SECTION 5.3 PHYSICS AND THE QUANTUM MECHANICAL MODEL

- 1. What is the wavelength of the radiation whose frequency is 5.00×10^{15} s⁻¹? In what region of the electromagnetic spectrum is this radiation?
- 2. An inexpensive laser that is available to the public emits light that has a wavelength of 670 nm. What are the color and frequency of the radiation?
- 3. What is the energy of a photon whose frequency is 2.22×10^{14} s⁻¹?
- **4.** What is the frequency of a photon whose energy is 6.00×10^{-15} J?
- 5. Arrange the following types of electromagnetic radiation in order of increasing frequency.
 - a. infrared

- c. visible light
- e. microwaves

- **b.** gamma rays
- d. radio waves
- f. ultraviolet
- **6.** Suppose that your favorite AM radio station broadcasts at a frequency of 1600 kHz. What is the wavelength in meters of the radiation from the station?

5

INTERPRETING GRAPHICS

Use with Section 5.3

Figure 1 The emission spectrum and orbit-transition diagram for hydrogen.

Table 1

Transition	<i>E</i> (J)	$v(s^{-1})$	λ(m)	Type of Radiation
$n=6 \rightarrow n=5$	2.66×10^{-20}			
$n=6 \rightarrow n=4$	7.57×10^{-20}			
$n = 6 \rightarrow n = 3$	1.82×10^{-19}			
$n = 6 \rightarrow n = 2$	4.84×10^{-19}			
$n=6 \rightarrow n=1$	2.12×10^{-18}			
$n = 5 \rightarrow n = 4$	4.91×10^{-20}			
$n = 5 \rightarrow n = 3$	1.55×10^{-19}			
$n = 5 \rightarrow n = 2$	4.56×10^{-19}			
$n = 5 \rightarrow n = 1$	2.09×10^{-18}			
$n = 4 \rightarrow n = 3$	1.06×10^{-19}			
$n=4 \rightarrow n=2$	4.09×10^{-19}			
$n=4 \rightarrow n=1$	2.04×10^{-18}			
$n = 3 \rightarrow n = 2$	3.03×10^{-19}			
$n = 3 \rightarrow n = 1$	1.94×10^{-18}			
$n=2 \to n=1$	1.64×10^{-18}			